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‘ Disclaimers

References are not necessarily
authoritative and complete |
®

Let me know of additional related
work at leman@cs.stonybrook.edu

Several slides have been reused
or modified by the permission
of the original creators.
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‘ Anomaly detection: Applications

Tax evasion

Credit card fraud

SMarty Bucella www.martybucella.com

"I owe that much? How much would I
owe if I turned in a friend?"

© Original Artist
Reproduction rights obtainable from
ww.Canuo’ﬁSt'nckAcom

“Sorry, it looks like your credit card has been cloned.”

Healthcare fraud
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‘ Applications

Malware
Investment fraud Click fraud Spyware
Insurance fraud Malicious cargo
Auction fraud Damage detection

Fake reviews  Medical diagnosis Email spam

False advertising

Performance monitoring
Web spam Insider threat

Image/video surveillance
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‘ Anomaly detection: definition

= (Hawkins’ Definition of Outlier, 1980)

“An outlier is an observation that differs |

so much from other observations as to
arouse suspicion that it was generated
by a different mechanism.”

No unique
definition

leads to

Many definitions in
various contexts

outlier, anomaly, outbreak, event, fraud, ...

L. Akoglu & C. Faloutsos
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‘ Anomaly detection: definition

= for practical purposes,

a record/point/graph-node/graph-edge

Is flagged as anomalous
If a rarity/likelihood/outlierness score
exceeds a user-defined threshold

= anomalies:

- rare (e.g., rare combination of
categorical attribute values)

0.4
Ly A
02

1111111111

-> isolated points in n-d spaces

2000 2001 ' 2002 ' 2003 ' 2004 ' 2005 ' 2006 ' 2007 "

= surprising (don't fit well in our mental/statistical
model == need too many bits under MDL)
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‘ Why graph-based detection?

s Powerful representation
0 Interdependent instances
o Long-range relations
o Node/Edge attributes (data complexity)
o Hard to fake/alter (adversarial robustness)

= Abundant relational data
2 Web, email, phone call, ...

= Nature of applications
o (1) opportunistic fraud (word of mouth)
o (2) organized fraud (group activity)

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) 10
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Protein-protein
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Dating network
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'Problem revisited for graphs

= Three different problem settings
o Unlabeled/Labeled (Attributed) Graphs
o Static/Dynamic Graphs

o Un-/Semi-/- Supervised Graph Techniques

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) 13



Taxonomy

Graph Anomaly Detection

\4

\ 4 A\ 4
Static graphs Dynamic graphs Graph algorithms
A 4 \4
v Plain v v
Plain Attributed Learning Inference
l l Distance based models lterative
_ _ classification
Feature based Structure based Feature-distance RMNs Belicf
Structural features || Substructures Structure distance EEI\I\/II: propagation
Recursive features || Subgraphs Relational netw.
MLNs classification
Structure based

“‘phase transition”

Community Community
based based
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‘ Goal of this tutorial

= Introduce various problem formulations
o Definitions change by application/representation

= Applications of problem settings
o Intrusion, fraud, spam

= Introduce existing techniques
o Model fitting, factorization, relational inference

= Pros and Cons
o Parameters, scalability, robustness

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) 15



‘ Tutorial Outl

Ine

m Motivation, applications, challenges

B Part I: Anoma

y detection in static data

o Overview: Out

lers in clouds of points

o Anomaly detection in graph data

= Part |I: Event detection in dynamic data
o Overview: Change detection in time series

o Event detectio

nin graph sequences

= Part Ill: Graph-based algorithms and apps
o Algorithms: relational learning

o Applications: f

raud and spam detection

L. Akoglu & C. Faloutsos
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Anomaly detection
In static graphs



‘ Part I: Outline

mp Overview: Outliers in clouds of points

o Outliers in numerical data points
= distance-based, density-based, ...

o Outliers in categorical data points
= model-based

= Anomaly detection in graph data
2 Anomalies in unlabeled, plain graphs

2 Anomalies in node-/edge-labeled, attributed
graphs

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) 18



‘ Outlier detection

= Anomalies in multi-dimensional data points

o Density-based | . 3

o Distance-based | b-;#

o Depth-based e -

o Distribution-based | g%:f -

. - __\—‘—\—_ﬁ

0 Cluste.r.lng_based s | ——

o Classification-based - ?;|

o Information theory-based “[ | ————
Spectrum-based ? B

Q - - _—

a . 2‘/

= No relational links between points

L. Akoglu & C. Faloutsos
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Part I: References (outliers)

= M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. LOF:
Identifying density-based local outliers. SIGMOD, 2000.

= S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C.
Faloutsos. LOCI: Fast outlier detection using the local
correlation integral. ICDE, 2003.

= C. C. Aggarwal and P. S. Yu. Outlier detection for high
dimensional data. SIGMOD, 2001.

= A. Ghoting, S. Parthasarathy and M. Otey, Fast Mining of
Distance Based Outliers in High-Dimensional Datasets.
DAMI, 2008.

= Y. Wang, S. Parthasarathy and S. Tatikonda, Locality
Sensitive Outlier Detection. ICDE, 2011.

= Kaustav Das, Jeff Schneider. Detecting Anomalous
Records in Categorical Datasets. KDD 2007.
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Part I: References (outliers)

Muller E., Schiffer M., Seidl T. Adaptive Outlierness for
Subspace Outlier Ranking. CIKM, 2010.

Mdaller E., Assent I., Iglesias P., Mille Y., Bohm K.
Outlier Ranking via Subspace Analysis in Multiple Views

of the Data. ICDM, 2012.

L. Akoglu, H. Tong, J. Vreeken, and C. Faloutsos. Fast
and Reliable Anomaly Detection in Categoric Data.

CIKM, 2012.

A. Chaudhary, A. S. Szalay, and A. W. Moore. Very fast
outlier detection in large multidimensional data sets.
DMKD, 2002.

Survey: V. Chandola, A. Banerjee, V. Kumar: Anomaly
Detection: A Survey. ACM Computing Surveys, Vol.
41(3), Article 15, July 20009.
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‘ Part I: Outline

= Overview: Outliers in clouds of points

o Outliers in numerical data points
= distance-based, density-based, ...

o Outliers in categorical data points
= model-based

= Anomaly detection in graph data
m) Anomalies in unlabeled, plain graphs

2 Anomalies in node-/edge-labeled, attributed
graphs
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Taxonomy

Graph Anomaly Detection

\4

\4 \ 4
Static graphs Dynamic graphs Graph algorithms
\4 v
Plain v !
Attributed Learning Inference
l Distance based models lterative
. - classification
Feature based Structure based Feature-distance RMNs Belief
Structural features || Substructures Structure distance EEI\I\/II: propagation
Recursive features || Subgraphs Relational netw.
MLNS classification
Structure based
Community Community “phase transition”
based based
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Akoglu et al. 10

' Anomalies in Weighted Graphs

m Problem:

Q1. Given a weighted
and unlabeled graph
how can we spot
strange, abnormal,
extreme nodes?

t

Jf .'ja
’ Q

Q2. Can we explain why !
the spotted nodes are -

anomalous?

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13)



‘ Problem sketc

lO'r
‘0.[

10}

10 "

.
'e 4 4 - 1 J
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' OddBall: approach

1) For each node,
1.1) Extract “ego-net” (=1-step neighborhood)
1.2) Extract features (#edges, total weight, etc.)
-> features that could yield “laws”
-> features fast to compute and interpret

2) Detect patterns:
-> regularities

3) Detect anomalies:
—>“distance” to patterns =

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) 26



Whatis odd? ‘
K i R o

Sdly S R

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) 27




‘ Which features to compute?

= N;: number of neighbors (degree) of ego i
= E. number of edges in egonet |

= W, total weight of egonet |
= A, principal eigenvalue of the weighted
adjacency matrix of egonet |

\/ s

\
\
\ \\
‘4\7 "—\\7
\ \

\ \
\ \
()
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‘ Weighted principal eigenvalue w

A = N = VE = W
A T

~x VE, \W
% h oW || A= N~ W
o0 Awi =W Ay i= W

N: #neighbors, W: total weight

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) 29



'OddBall: pattern#1.

mﬁE
: - ra
discussion group, 7
“rank boosting”, etc. slope=2 e
o P / sI09§=1.35
Ll m“;— W% ’ ‘,i
0))
U .
O) o'k
3 p
#* ! slope 1
10 F
telemarketer, spammer,
o'l port scanner, “popularity
7 contests”, etc.
[ 44
n- #°
10 " »—— '1 ..|2 3 4
10 10 10 10 10

#neighbors N

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) 30



'OddBall: pattern#2

high $ vs. #accounts,
high $ vs. #donors, etc.

S—
; 10°
— |
=
_'f_g 1wkt N
S : AN , .
uniform, robot-like
10’ behavior
/Y
1DDD ) III|1 R | Ll |4 III|5
10 10 10 10

#edges E
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10°r Vs
/7
/
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slope= 1{/
Q" /" slope=0.64
- .~ SIOpeE=U.
© o e "4‘ f¢'*;+* t++ *
> 3 ;1: so + o
!G:) 10k _T.-_': ‘ .:
o | R
2 > _.-~"slope=0.5
((D) 1|]1 #
9
L g \E: é
LA
( ; i M L i L i Ll
mm” 10° 10° 10° 10° 10°
total weight W
L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) 32



'OddBall: anomaly detection

| scorey = distance to fitting line
score, = outlier-ness score

score = func ( SCOr€jist » scoreouu)

taal
10’

10°
# neighbors N

total weight W

v" can tell what type

of anomaly a node
belongs to

v can quantify “"anomalous-ness”
of nodes using score

L. Akoglu & C. Faloutsos

g 10’
# edges E
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' OddBall: datasets

Bipartite graphs: V] |E]
1. FEC Don2Com 1.6M 2M
2. FEC Com2Cand 6K 125K
3. DBLP Auth2Conf 21K 1M
Unipartite graphs: V| |E]

4. BlogNet 27K 126K
5. PostNet 223K 217K
6. Enron 36K 183K
/. AS peering 11K 8K

L. Akoglu & C. Faloutsos

Anomaly detection in graph data (WSDM'13)
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' OddBall at work (Posts)

#cross-citations

POSTS

4 e g .
“r o 0 - - s
. “.-:L S . : : Y 4 : :
- ,-" http:/iinstapundit.com/
N http.ffwwffw.slzemo O.I_.lld p archives/025235.php
100 b 2005/08/i-feel-some-movies »~ ‘J,
- -coming-on.html “’ﬁ" ’\

10° 10 10 10

#citations
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' OddBall at work (FEC)

COM2CANDIDATES  Kerry,
John F.

Snyder,
James E. Jr

#checks

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) 36




' 0ddBall at work (DBLP)

AUTHORS(AUTH2CONF)

) 1 1 N R R R T | 1 1 N E B R A | 1 1 M TR A |
10 il 1 2 3

10 n 1 10

#publications
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Henderson et al. 11

W

‘ Recursive structural features

= Main idea: recursively combine “local” (node-
based) and neighbor (egonet-based) features
o Recursive feature: any aggregate computed over

any feature (including recursive) value among a
node’s neighbors

Structural information

Neighborhood

recurs

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) 38




‘ Recursive structural features

In- and out-degree,
weighted versions

within-, incoming-, aggregate feature
outgoing-egonet ~ over neighbors

edges, weighted e.g. max/min/avg degree
versions (1+1+2+0+1+0+1)/7=0.86

L. Akoglu & C. Faloutsos
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‘ Recursive structural features

= Neigborhood features
0 captures node connectivity

Al

Source vs. Sink Star vs. Cluster

= Regional features
o captures “kinds” of
neighbors

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) 40




‘ Computing recursive features detanis

1 4
0.8

CDF

0.4

0.2

Log(feature value) paired features

Prune highly
correlated features

recursive features y

vertical logarithmic
binning of size@

bin feature (integer)

not disagree at(>s)nodes

CREe)

replace each CC in s-friend
graph by single feature

retain simpler features

l.e. generated in fewer iterations

buiunud ou |pun jeada.

L. Akoglu & C. Faloutsos
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Recursive structural features

Advantages:

= Capturing regional (behavioral) information in
large graphs

= Feature construction linear in graph size

Notes:

= Aggregates only for numerical features
= Parameters p, s for binning and pruning

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) 42



ReFeX: Recursive Feature eXtraction

= Recursive features proved effective in transfer

learning, identity resolution
(yet to be studied for anomaly detection)

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) 43




Sun et al. ‘o5

‘ Anomalies in Bipartite Graphs

= Problem:
Q1. Neighborhood formation (NF)

. . V1 V2
o Given a query node g in V,, E
what are the relevance scores |- <§;;0 25
of all the nodesinV,toq ? g’;;4<jb 2
/) 05
: 05 T |
Q2. Anomaly detection (AD) N g//;o
o Gilven a query node g in V,, 002 3 o
what are the normality scores ~ a|a4—

for nodes in VV, that link to g ?

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) SU”T'_CDM_,% o 44
modified with permission



‘ Applications of problem settlng

= Publication network
o (similar) authors vs. (unusual) papers

= P2P network
o (similar) users vs. (“cross-border”) files

= Financial trading network
o (similar) stocks vs. (cross-sector) traders

= Collaborative filtering 2
o (similar) users vs. (“cross-border”) products

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) Sun+ICDM'05 45
modified with permission



‘ 1) Neighborhood formation

Vi1
= Main idea: 3 Q\;O
o Random-Walk-with Restart from g 2 ij%

o Steady-state V1 prob.s as relevance a,;‘2<<%
0
. : Q//
o (1) Construct transition matrix P 05 8 7——10
l—c___ if (a,b) € E 0L @
P(a,b) :{ outdeg(ay T (@:0) € 002 §3 o
0 If(a,b){éE 01‘//
o (2) Fly-back prob. cto g =
o (3) Solve for steady state
q(t+1) P _,(t) cd
(1-c)
Approx: RWR on graph partition containing g
L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13)  Sun+ICDM'05 46
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‘ 2) Anomaly detection

= Main idea:
o Pairwise “normality” scores of neighbors(t)
o Function of (e.g. avg) pair-wise scores ¢ &

o ¢
2 (1) Find set S of nodes connected to t M%
0 (2) Compute |S|x|S| normality matrix R

= asymmetric, diagonal reset to O S

( 0%22
5 (3) Apply score function f(R) < "
= e.g. f(R) =mean(R)

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) SU”T'_CDM_,% o 47
modified with permission




‘ Experiment

Bl genuine
Bl injected ||

= 3 real datasets
o DBLP Conf-Auth
o DBLP Auth-Paper
o IMDB movie-actor

o
o o o
o N o
(%] 33 ™

0.015¢

0.01r

normality score

0.005¢

CA AP IMDB

= Randomly inject 100
nodes, each with k (avg. degree) edges
(biased towards high-degree nodes)

= No qualitative results on real nodes ranked top

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) 48



Tong etal. 12

‘ Graph Anomalies by NNrMF

= Low-rank adjacency matrix factorization of a E
(sparse) graph reveals communities and anomalies
Low-rank matrices Residual matrix

I
Graph ==» Adj. Matrix A =p A :@ +®

| community' ¥nomalies

Author

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13)  Tong+SDM11 49
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Non-negativity constraints

= For improved interpretability

= A Typical Procedure: _ Interpretation by Non-negativi
yP community P Y gatvty

Adjacency N Non-negative Matrix Factorization
Graph — “Matrix 4~ A= ’@ F>=0; G>=0
(for community detection)

anomalies

= An Example

. Conference Non-negative Residual
Matrix Factorization

R(j)>= 0, for A(3j) > 0

N N N I =1E=)
|

p O 0O =~

(for anomaly detection)

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13)  Tong+SDM11 o 50
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‘ Optimization formulation

. 5 o . - . . 2
Commonin o F.G N Z (A(i,j) = F(i,:)GC(, )
Matrix Factorization i.7, A(i,7)>0
S.1. forall A(i,7) > 0:

F(i,:)G(:,j) < A(i,))

Non-negative
residual

= Q: How to find ‘optimal’ F and G?
o D1: Quality <> C1: objective non-convex
o D2: Scalability €<-> C2: large graph size

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13)  Tong+SDM™11 o
modified with permission



TR
‘ Optimization: batch details
= Basic Idea 1: Alternating

argming ¢ » (A(i.j) — F(i,:)G(:. )

Not convex w.r.t. F and G, jointly
But convex if fixing either F or G

= Basic Idea 2: Separation
argming Y (A(i.j) - F(i.)G(..j))® argming > (AG) ~F(i,)G()))

st i, A(i,5)>0 i=,A(@'=J')>.0 |
T forall A(i,j) >0 s.t.. forall A(i,j) >0
F(i,))G(:.j) < A(i, j) F(i,/:)G(:,j) < A(i, j)

Standard Quadratic Programming

Overall Complexity: Polynomial
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‘ Optimization: incremental

m Basic Idea 0: Recursive
= Basic Idea 1: Alternating

argming , Z (A(i.7) — f(i)g(4))? Initialize: R=A
i,j, A(i,7)>0

Rank-1 Approximation

‘ Update Residual

Matrix R

= Basic Idea 2: Separation

QP for a single variable
w/ boundary constrains N\

argmin, Z (A(i,5) — £(i)g())?

Solved in A
constant time S.1. forall A(z,7) > 0: Output Final
f(i)g(7) < A(i,7) Residual Matri

Overall Complexity: Linear wrt # of edges
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Experiments

= NNrMF can spot 4 types of anomalies
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(¢) ddTos T (d) bipartite core
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‘ Experiments
= 4 real datasets, with injected anomalies

Effectiveness Efficiency
Accuracy Wall-clock time (s)
" ‘EIMOVIEILENS [ Jumop| |N|ES—PW|:|C|KM—§A‘ 80 1' '
—_— r=
1t I =2 | v~
.I. 80| —+—r=5 rank
o8r -I- | —=—r=10
3 —<— =20
3 06f I 40+
04} +]
20+ N
02 , .D-E'_‘_'_"_Ef———--“""______,_
strange connection port scan ddos bipartie core D 2}{1 DAE 4)(1 Oh5 5}(1 OAE
Anomaly Type # of edges
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Ding et al. 12
Intrusion as (Anti)social Communication

Lyberterrorism

= Problem:
Q. How to detect malicious
attacks in computer networks?

= Main insight for intrusion:
o entering a community to which one doesn’t belong

o look for communication that does not respect
community boundaries ®o
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‘ Problem formulation

= Network representation as a bipartite graph

Source IPs — 10) 1) |2 |30 9 |2 a8y |6y S

Q. E

Dest. IPs — = b @

o Source and destination IPs may overlap

= One mode projection Ge: connect two source IPs
with at least 1 common neighbor

= Alternative Gw: weighby 1 e

correlation coefficient 10 B /xf 9 4
L7 S \./ \\"\\ ///\\\
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Intrusion data with ground truth

= Data: netflow traffic
o from a large European ISP

o 2 weeks data in 2007: source |IP, dest IP,
start/end time, number of bytes/packets sent

o Ground truth: traffic sources that attempted an
Intrusion as recorded by Dshield*
= known IPs sending malicious or unwanted traffic

* http://www.dshield.org/ ™ ™ ™~
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Detection methods

= Community detection: Standard community
detection methods fail to distinguish knoviln IPs

from communities Size of Cluster | # of Clusters | # of DShields
Clauset, Newman, Moore ‘04 3;24 } 158
8 t0 243 10 0
<7 56 2
m Cut-vertices: Total 68 161

lteratively remove cut-vertices

0 6.6% of cut-vertices are Dshields (randomization
—randomly reassign Dshield nodes—yields
significance; (1-2.2%) at 0.05)

-> Clustering and betweenness are discriminative
59
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‘ Experiments

= Malicious if clustering/betweenness below/above
threshold

for a given threshold _ Mean(AUC) | SE(AUC) |
1 N T == Clustering on Gp 0.7440 0.0103
@ o°f e | Betweenness on Gp 0.7180 0.0084
—R| S | Clustering on Gy 0.7625 0.0080
g ' h " Betweenness on Gy 0.5621 0.0034
o7f J
q>) 06 ] ]
S o = Clustering gives better
o S— discrimination
031 ustering on G, i .
O .l —eememessnc, | @ (Gw does not provide much
- S == Clustering on G, .
= o) Betweenness on G, Improvement over Gp

0 0.2 0.4 0.6 0.8 1

False Positive Rate
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Community mining fFeature mining

Part I: References (plain graphs)

= L. Akoglu, M. McGlohon, C. Faloutsos. OddBall: Spotting

Anomalies in Weighted Graphs. PAKDD, 2010.

K. Henderson, B. Gallagher, L. Li, L. Akoglu, T. Eliassi-Rad,
H. Tong, C. Faloutsos. It's Who You Know: Graph Mining
Using Recursive Structural Features. KDD, 2011.

J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos.
Neighborhood formation and anomaly detection in bipartite

graphs. ICDM, 2005.

Hanghang Tong, Ching-Yung Lin:_Non-Negative Residual
Matrix Factorization with Application to Graph Anomaly

Detection. SDM, pages 143-153, 2011.

Q. Ding, N. Katenka, P. Barford, E. Kolaczyk, and M.
Crovella. Intrusion as (Anti)social Communication:
Characterization and Detection. KDD, 2012.
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‘ Part I: Outline

= Overview: Outliers in clouds of points

o Outliers in numerical data points
= distance-based, density-based, ...

o Outliers in categorical data points
= model-based

= Anomaly detection in graph data
2 Anomalies in unlabeled, plain graphs

»Anomalies In node-/edge-labeled, attributed
graphs
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Coffee break...




